3.2.40 \(\int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [140]

3.2.40.1 Optimal result
3.2.40.2 Mathematica [A] (verified)
3.2.40.3 Rubi [A] (verified)
3.2.40.4 Maple [B] (warning: unable to verify)
3.2.40.5 Fricas [A] (verification not implemented)
3.2.40.6 Sympy [F]
3.2.40.7 Maxima [F]
3.2.40.8 Giac [B] (verification not implemented)
3.2.40.9 Mupad [F(-1)]

3.2.40.1 Optimal result

Integrand size = 21, antiderivative size = 174 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {5 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {115 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}} \]

output
-5*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d-1/4*sin(d*x 
+c)/d/(a+a*sec(d*x+c))^(5/2)-15/16*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+1 
15/32*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2 
)/d*2^(1/2)+35/16*sin(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)
 
3.2.40.2 Mathematica [A] (verified)

Time = 1.96 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.97 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {460 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )-80 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)+\sqrt {1-\sec (c+d x)} (16 \sin (c+d x)+5 (11+7 \sec (c+d x)) \tan (c+d x))}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(460*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^5*Se 
c[c + d*x]^3*Sin[(c + d*x)/2] - 80*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*(1 + Se 
c[c + d*x])^2*Tan[c + d*x] + Sqrt[1 - Sec[c + d*x]]*(16*Sin[c + d*x] + 5*( 
11 + 7*Sec[c + d*x])*Tan[c + d*x]))/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + S 
ec[c + d*x]))^(5/2))
 
3.2.40.3 Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.09, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.762, Rules used = {3042, 4304, 27, 3042, 4508, 27, 3042, 4510, 25, 3042, 4408, 3042, 4261, 216, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x)}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle -\frac {\int -\frac {5 \cos (c+d x) (2 a-a \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 \int \frac {\cos (c+d x) (2 a-a \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \int \frac {2 a-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {5 \left (\frac {\int \frac {\cos (c+d x) \left (14 a^2-9 a^2 \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5 \left (\frac {\int \frac {\cos (c+d x) \left (14 a^2-9 a^2 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \left (\frac {\int \frac {14 a^2-9 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4510

\(\displaystyle \frac {5 \left (\frac {\frac {\int -\frac {16 a^3-7 a^3 \sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {16 a^3-7 a^3 \sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {16 a^3-7 a^3 \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4408

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {16 a^2 \int \sqrt {\sec (c+d x) a+a}dx-23 a^3 \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {16 a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-23 a^3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {-23 a^3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {32 a^3 \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {32 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-23 a^3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {46 a^3 \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {32 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {5 \left (\frac {\frac {14 a^2 \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {32 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {23 \sqrt {2} a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}}{4 a^2}-\frac {3 a \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

input
Int[Cos[c + d*x]/(a + a*Sec[c + d*x])^(5/2),x]
 
output
-1/4*Sin[c + d*x]/(d*(a + a*Sec[c + d*x])^(5/2)) + (5*((-3*a*Sin[c + d*x]) 
/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (-(((32*a^(5/2)*ArcTan[(Sqrt[a]*Tan[c 
+ d*x])/Sqrt[a + a*Sec[c + d*x]]])/d - (23*Sqrt[2]*a^(5/2)*ArcTan[(Sqrt[a] 
*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/a) + (14*a^2*Sin[c 
+ d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4*a^2)))/(8*a^2)
 

3.2.40.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4408
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c/a   Int[Sqrt[a + b*Csc[e + f*x]], x], x] - 
Simp[(b*c - a*d)/a   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 
3.2.40.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(472\) vs. \(2(145)=290\).

Time = 22.85 (sec) , antiderivative size = 473, normalized size of antiderivative = 2.72

method result size
default \(-\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (-2 \left (1-\cos \left (d x +c \right )\right )^{7} \csc \left (d x +c \right )^{7}+80 \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+21 \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}-115 \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+80 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+34 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-115 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-53 \csc \left (d x +c \right )+53 \cot \left (d x +c \right )\right )}{32 d \,a^{3} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )}\) \(473\)

input
int(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/32/d/a^3*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(-2*(1-cos(d*x+ 
c))^7*csc(d*x+c)^7+80*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*2^(1/2)*arct 
anh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c 
)))*(1-cos(d*x+c))^2*csc(d*x+c)^2+21*(1-cos(d*x+c))^5*csc(d*x+c)^5-115*((1 
-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+ 
c))^2*csc(d*x+c)^2-1)^(1/2))*(1-cos(d*x+c))^2*csc(d*x+c)^2+80*2^(1/2)*arct 
anh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c 
)))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)+34*(1-cos(d*x+c))^3*csc(d*x+c) 
^3-115*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*( 
(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)-53*csc(d*x+c)+53*cot(d*x+c))/((1-co 
s(d*x+c))^2*csc(d*x+c)^2+1)
 
3.2.40.5 Fricas [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 606, normalized size of antiderivative = 3.48 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [-\frac {115 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 160 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (16 \, \cos \left (d x + c\right )^{3} + 55 \, \cos \left (d x + c\right )^{2} + 35 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {115 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 160 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left (16 \, \cos \left (d x + c\right )^{3} + 55 \, \cos \left (d x + c\right )^{2} + 35 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[-1/64*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 
1)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/( 
cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 160*(cos(d*x + c)^3 + 3*cos(d*x + 
c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d 
*x + c) - a)/(cos(d*x + c) + 1)) - 4*(16*cos(d*x + c)^3 + 55*cos(d*x + c)^ 
2 + 35*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)) 
/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a 
^3*d), -1/32*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + 
 c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*co 
s(d*x + c)/(sqrt(a)*sin(d*x + c))) - 160*(cos(d*x + c)^3 + 3*cos(d*x + c)^ 
2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*(16*cos(d*x + c)^3 + 55*cos( 
d*x + c)^2 + 35*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin( 
d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x 
 + c) + a^3*d)]
 
3.2.40.6 Sympy [F]

\[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\cos {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral(cos(c + d*x)/(a*(sec(c + d*x) + 1))**(5/2), x)
 
3.2.40.7 Maxima [F]

\[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)/(a*sec(d*x + c) + a)^(5/2), x)
 
3.2.40.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 424 vs. \(2 (145) = 290\).

Time = 1.26 (sec) , antiderivative size = 424, normalized size of antiderivative = 2.44 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {2 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {21 \, \sqrt {2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {128 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {115 \, \sqrt {2} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {160 \, \log \left (\frac {{\left | -2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} + 6 \, a \right |}}{{\left | -2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} + 6 \, a \right |}}\right )}{\sqrt {-a} a {\left | a \right |} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{64 \, d} \]

input
integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
-1/64*(2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*tan(1/2*d*x + 1/2* 
c)^2/(a^3*sgn(cos(d*x + c))) - 21*sqrt(2)/(a^3*sgn(cos(d*x + c))))*tan(1/2 
*d*x + 1/2*c) - 128*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*ta 
n(1/2*d*x + 1/2*c)^2 + a))^2 - a)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt( 
-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqr 
t(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*sqrt(-a)*a*sgn(cos(d*x + c))) 
 + 115*sqrt(2)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 
1/2*c)^2 + a))^2)/(sqrt(-a)*a^2*sgn(cos(d*x + c))) - 160*log(abs(-2*(sqrt( 
-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt 
(2)*abs(a) + 6*a)/abs(-2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2* 
d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) + 6*a))/(sqrt(-a)*a*abs(a)*sgn(c 
os(d*x + c))))/d
 
3.2.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(cos(c + d*x)/(a + a/cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)/(a + a/cos(c + d*x))^(5/2), x)